
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 5. November 2018
Markus Püschel, David Steurer

Datenstrukturen & Algorithmen Bla� P7 HS 18

Please remember the rules of honest conduct:

• Programming exercises are to be solved alone

• Do not copy code from any source

• Do not show your code to others

Hand-in: Sunday, 18. November 2018, 23:59 clock via Online Judge (source code only).
�estions concerning the assignment will be discussed as usual in the forum.

Exercise P7.1 Bitcoins.

As an employee of the Federal Tax Administrations o�ce in Switzerland you have been tasked to mon-
itor bitcoin transactions. In particular, you are interested to discover the range of the 1/3 most valuable
transactions ever made using bitcoin. �e bitcoin network is a distributed database that constantly gets
updated, and continuously grows in size. As a result, you need to create a live system that can e�-
ciently consume new transactions, and report the range from the bn/3c-th most valuable transaction
to the most valuable transaction. �erefore, your system supports two operations:

1. Insert. �e insertion is done by entering the number 1 on the standard input, followed by a
number V (1 ≤ V ≤ 109) that indicates the (integer) value of the new transaction. Every time a
transaction is added, the number of transactions n in the system is increased by 1.

2. Report. �e reporting is done by entering the number 2 on the standard input. �en the moni-
toring system will report the bn/3c-th transaction and the �rst transaction, assuming that all n
transactions have been previously sorted in a decreasing order. If n < 3 at the time the reporting
routine is being invoked, the system will print out the message Not enough transactions.

Note that as the monitoring system is live, it is capable of executing both operations in any order (i.e.,
insert and report can come one a�er the other) and the report routine can be as frequent as the insert
routine. Also note that every time the report routine is invoked, it will perform an analysis on the
transactions already available by the system.

Input �e �rst line of the input consists of the number Q (1 ≤ Q ≤ 5 · 105) that indicates the
number of routines that will be invoked. Each of the nextQ lines contain either an insert routine in the
form of “1 V” or a report routine in the form of “2” as described above.

Output �e output consists of R (R ≤ Q) lines such that R corresponds to the number of report
routines present in the input. Each line is either the message Not enough transactions or two numbers
L and H in the form of “L - H” such that L is the bn/3c-th most valuable transaction and H is the
most valuable transaction present in the system when the report routine was invoked. �e output is
terminated with an end-line character.

Grading You get 3 bonus points if your program works for all inputs. Ideally, your algorithm should
require O(1) time for the report routine and O(log(n)) for the insert routine (with reasonable hid-
den constants). Submit your Main.java at https://judge.inf.ethz.ch/team/websubmit.php?cid=
25012&problem=AD18H7P1. �e enrollment password is “asymptotic”.

Example

Input:

12

1 1

1 7

2

1 9

1 8

1 5

1 6

2

1 21

2

1 9

2

Output:

Not enough transactions

8 - 9

9 - 21

9 - 21

A detailed explanation for the 12 routines above:

1. Insert 1 to the array. Current array is [1].

2. Insert 7 to the array. Current array is [7,1].

3. Report. Array size is less than 3. Output is Not enough transactions.

4. Insert 9 to the array. Current array is [9,7,1].

5. Insert 8 to the array. Current array is [9,8,7,1].

6. Insert 5 to the array. Current array is [9,8,7,5,1].

7. Insert 6 to the array. Current array is [9,8,7,6,5,1].

8. Report. Array size is 6. bn/3c = 2, and the 2-nd element in the sorted array is 8 and highest is 9,
therefore L = 8 and H = 9. Output is 8 - 9.

9. Insert 21 to the array. Current array is [21,9,8,7,6,5,1].

10. Report. Array size is 7. bn/3c = 2, therefore L = 9 and H = 21. Output is 9 - 21.

11. Insert 9 to the array. Current array is [21,9,9,8,7,6,5,1].

12. Report. Array size is 8. bn/3c = 2, therefore L = 9 and H = 21. Output is 9 - 21.

2

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H7P1
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H7P1

Notes For this exercise we provide an archive containing a program template available at https://
www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P1.Bitcoins.zip�earchive also
contains additional test cases (which di�er from the ones used for grading). Importing any additional
Java class is not allowed (with the exception of the already imported ones java.io.{InputStream,
OutputStream} and java.util.Scanner class).

Exercise P7.2 Mountain Trip.

A road is n kilometers long and passes through several cities. Each city can be either a mountain city or
a sea city. �ere areM mountain cities, the i-th of which is locatedmi kilometers a�er the beginning of
the road. Similarly, there are S sea cities and the i-th sea city is located si kilometers a�er the beginning
of the road (mi and si are integers between 0 and n, endpoints included, and each kilometer of the road
can traverse at most one city).

A travel agency o�ers T possible trips. �e i-th trip starts from kilometer bi and ends at kilometer ei
of the road, visiting all the cities in-between (endpoints included). Alice wants to buy a trip that visits
the largest number of mountain cities and that does not visit any sea city.

Your task is to design an algorithm that �nds the best trip for Alice.

Input �e input consists of a set of instances, or test-cases, of the previous problem. �e �rst line
of the input contains the number C of test-cases, and each test-case consists of 5 lines. �e �rst line of
each test-case contains the four integers n, M , S, and T . �e second line contains M integers, where
the i-th integer is the position mi of the i-th mountain city. �e third line contains S integers, where
the i-th integer is the position si of the i-th sea city. �e fourth line contains T integers, where the i-th
integer is the number bi. Finally, the ��h line also contains T integers, where the i-th integer is the
number ei.

Output �e output consists of C lines, where the i-th line is the answer to the i-th test-case and
contains the index of the best trip, i.e., an integer t such that 1 ≤ t ≤ T and:

(1) there exists no j such that bt ≤ sj ≤ et;

(2) for every index r 6= t that satis�es condition (1), |{j : br ≤ mj ≤ er}|< |{j : bt ≤ mj ≤ et}|.

You can assume that such an index t always exists.

Grading �is exercise awards no bonus points. Your algorithm should requireO ((M + S + T) log(M + S))
time (with reasonable hidden constants). Submit your Main.java at https://judge.inf.ethz.ch/
team/websubmit.php?cid=25012&problem=AD18H7P2. �e enrollment password is “asymptotic”.

Example

0 1 2Km 3 4 5 6 7 8 9 10 11

trip 1

trip 4

trip 2

12

trip 5

trip 3

Input (corresponding to the instance in the previous picture):

1

12 7 3 5

10 8 5 3 9 1 12

3

https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P1.Bitcoins.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P1.Bitcoins.zip
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H7P2
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H7P2

6 2 11

1 5 8 3 7

3 7 11 5 8

Output:

4

Notes For this exercise we provide an archive containing a program template available at https://
www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P2.MountainTrip.zip�earchive
also contains additional test cases (which di�er from the ones used for grading). Importing any addi-
tional Java class isnot allowed (with the exception of the already imported ones java.io.{InputStream,
OutputStream} and java.util.Scanner class).

4

https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P2.MountainTrip.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P2.MountainTrip.zip

